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SUMMARY

The solution of sets of non-linear partial differential equations using the method of integral relations is considered.
Empbhasis is laid on the derivation of a general N-strip approximation algorithm. In order to check the applicability
of this algorithm a program has been written to obtain the solution of the flow field around a circular cone at incidence
in supersonic flow. Using the method of Stone, the angle of attack has been taken into account up to the second order.
Thus a comparison can be made with the results given by Kopal.

The results show that the N-strip algorithm in the case studied is a very attractive method which leads straight-
forward to results of high accuracy.

1. Introduction

In many instances interesting fysical phenomena are governed by sets of partial differential
equations, which are non linear and have complicated boundary conditions, often involving
an in advance unknown geometrical boundary of the region of interest. In most cases an
analytical solution is out of the question, but even a numerical solution by means of finite
difference methods is hard to achieve in the case of an unknown boundary and would normally
require a rather complicated and unwieldy iteration scheme to find this boundary as part of
the solution.

By Dorodnitsyn a method was proposed for solving such problems approximately for those
cases in which the partial differential equations can be written as a system of divergence ex-
pressions [1]. This so-called method of integral relations e.g. transforms a two-dimensional
problem into a set of ordinary differential equations, by dividing the region of interest into a
number of strips and by assuming a certain behaviour of the vector and scalar fields involved.
The size of this set depends on the number of strips. An essential feature is that a priori unknown
boundaries can be included quite naturally into the analysis. Since a number of methods is
available for solving systems of ordinary differential equations, an approximation can be found
in this way.

In many problems on fluid flow the flow quantities such as pressure and velocity may show
strong variations throughout the flow field, whereas the components of the vector fields in-
volved in the divergence e ressions are much more smooth. This then probably is the reason
for some rather sensational successes when applying the method with only one or two strips to
problems that otherwise are much harder to solve. References | 1-4] give a number of examples
on the various applications. The results can be improved when using more strips, say three or
four as has been shown by Belotserkovskii and Chuskin [3] and [4]. However, it appears that
this improvement is obtained at the cost of solving a system of equations rapidly increasing in
size and complexity. This complexity, which is mainly due to the vast number of algebraic
manipulations, already becomes practically prohibitive for five strips.

Nevertheless, the method is one of the very few known today for the direct solution of non-
linear problems. Naturally the search therefore is to present it in a form which eliminates or
reduces its complexity, so that it would become possible to compute general N-strip approxi-
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mations. Although of course, once such a scheme would be achieved the necessity arises to
consider the convergence and the consistence of the method for N going to infinity, these
questions will be left aside for the time being, at least their theoretical aspects.

The model problem which will be analyzed here, namely the flow around a circular cone at
an angle of attack, has been the subject of a large number of papers (see e.g. [5-9]). As such it
gives a fine base for comparison.

It will be shown that it is possible in this case to present an algorithm for the general N-strip
approximation by using matrix calculus. The resulting system of ordinary differential equations
will be simplified further, by reducing it to a system of algebraic equations, by using a method
due to Stone [6]. In this way the results can be compared directly to the tables calculated by
Kopal [7], [10] and [11]. The peculiar aspects involved in this approach i.e. the neglect of the
vortical layer will be discussed in the paper.

The first part of the paper is devoted to a brief description of the method of integral relations
and its application to the equations for conical flow. The emphasis lies on the formulation of
the general N-strip scheme.

The second part is devoted to the evaluation of the systems of algebraic equations which
result when applying the method of Stone. Three terms in the Stone series will be considered.

The third part gives a thorough discussion of the results. Four examples are calculated with
up to ten strips.

2.'Description of the Method of Integral Relations

In many cases the partial differential equations of physics and mechanics can be written as a
system of generalized continuity equations, i.e. given a number of vector fields V; and scalar
fields S, each ¥ can be considered as the velocity field of an incompressible medium with unit
density and S; as a corresponding source distribution. Hence

V-V, =S, i=1..n 2.1)

The components of the vector fields and the scalar fields will usually depend on the independent
and dependent variables.
In the two-dimensional case, which will be considered henceforth, the system (2.1) becomes

0P, 09,
o + 3y S; (2.2)
where P;and Q, are the components of V..

Let it be necessary to find for a given set of boundary conditions a solution of this systemin a
region bounded by x = a, x = b, y = 6,(x) and y = dx(x) where the quantities ,(x) and dy(x)
may be unknown a priori, but are part of the solution.

Assuming that such a solution exists, this is constructed approximately by using the method
of integral relations, as follows. The region is divided in N strips as indicated in Fig. 1 and it is
assumed that the behaviour of dP,/0x and S; as a function of y and for a certain x can be re-
presented by a set of (N + 1) functions, which means for example

oP, N oPi
=Y ) S 23)

j=0

where the only condition on g;;is : g;;(,) = 6, (Kronecker delta) and where

P (6Pi>
ox  \ox y=5;

The essence of the method is the requirement that eq. (2.2) is satisfied “in the mean” for each of
the regions y = §,(x) —y = 8,(x). This can be expressed as

B 5Pl (9 6Q; Sk
J 6—dy+f EdY—JosidY- (2'4)

s, 0X o 3
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y= GN(X)
y= 5N..1(X)
e —— 1

. —— e
-

y=8o(x)
\—/’—-——\

x=a x=b

Figure 1. The region of interest divided in N strips.

When using the representation (2.3) for each of the functions dP,/0x and S; and assuming g;;
to be independent of i there is found when positing
[
g,(y)dy = ay; k=1..N (2.5)

[

that
J

N OP! _
j;o Ay A + 0:(09) —0:(0,) =

g

ay;j Si. (2.6)

j=0

It should be remarked that since g; in general is dependent on the set {5,(x)}, the values ay; are
dependent on x.

The system of equations (2.6) can be further transformed by using the directional derivative
dPi/dx given by

dP] 0PI  db,(x) oPi
= +- A
dx 0x “dx 0Oy

2.7)

and eliminating 0P//0y by using a representation analogous to eq. (2.3) for P, itself, hence

oP, N
_J=Zhil P;. (2.8)

Substituting eqs (2 7) and (2 8) into eq. (2.6) there finally is obtained (assuming h;, to be inde-
pendent on i)
v dP]  dd(x) X

) P! .
Tl = T % o)l +06)- 0,60 z% (29)
In this way a system of nN differential equations is obtalned, which usually will be non-linear
and quite complex in character since P, Q; and S, are itself expressions in the unknown quan-
tities. Especially for large values of N the system can become practically unmanageable, when
it is tried to write down the equations.

However, in the sequel it will be shown that a large part of the algebraic manipulations can
be performed by the computer.

3. An N-Strip Scheme for Conical Flow

In this chapter it will be shown first that the differential equations governing conical flow can
be brought into the form of eq. (2.2). Then the boundary conditions will be analyzed to gain an
insight into the properties of the region where the solution has to be found and finally using
this knowledge an algorithm will be derived for the N-strip method in this case.
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3.1. The equations governing conical flow

When using a spherical coordinate system (r, 6, ¢) and accordingly defined velocities (u, v, w)
the differential equations governing the flow of an isentropic ideal gas are

Ou Ou w  du 2 2 r op
Ry e (31a)
ov ov w  Ov ) 1 dp
rua+l;%+m%+(uv—w cotG)——;é—é (3.1b)
ow ow w  ow 1 op
Mo UGt g o T Wt =—oh 58 19
0,, . d . 0 .
— (P pusin6) + — (rpv sin 6) + — (rpw)=0. (3.1d)

or a0 Er

The relation between the pressure p and the density p is given by the velocity of sound a as
follows

P 1 y—1,
y;:az =M—£+—2 (l—uz—vzh‘wz) (32)
where y is the ratio of the specific heats and M, is the Mach number of the free stream. It is
assumed that u, v and w are nondimensionalized with respect to the free stream velocity U,,, p
with p_, and p with p_ U2,
The system (3.1) can be brought into the form

V-V=5 i=1..4 (3.3)
6 o0 0
(2,2 °)and
where V <8r’ %0 8¢> an
V, = ([ pu* +p]r*sin 6, puvr sin 6, puwr) S; = (pv*+ pw?*+2p)r sin 6
V, = (puvr?sin 6, [ pv* + p]r? sin 6, pvwr?) S, = (pw?+p)ricos 0
V, = (pur®sin 0, por sin 6, pwr) S;=0

V, = (puwr?sin? 6, pvwr? sin? 0, [ pw* + p]r? sin 6) S,=0

In the case of conical flow, i.e. supersonic flow with attached shock wave around a conical
body, the flow quantities are independent on the radial coordinate r. Hence the system (3.3)
transformsinto

V-FE=T, i=1..4 (3.4)
g 0
where V = <5q§ , E) and
F = (puw, puv sin 0) T, = p(—2u?+v* +w?) sin 0
F, = (pvw, [pv* +p] sin 6) T, = (pw? +p) cos 6—3puv sin 0
F,=(pw, pv sin 6) Ty, = —2pu sin §
F, = (pw?+p, pvw sin 6) T, = — pw(3u sin 6+v cos 6).

This clearly demonstrates that eq. (3.4) has the form of eq. (2.2) and hence the method of integral
relations can be applied.

3.2. The boundary conditions

In order to solve the system given by eq. (3.4) the appropriate boundary conditions have to be
formulated. At the shock wave, which as should be emphasized has an a priori unknown shape,
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the usual conditions of conservation of mass, momentum and energy should apply. At the
surface of the conical body the normal velocity has to be zero.

First the conditions at the shock wave will be derived. If it is assumed that the spherical
coordinate system is defined by an axis lying in the x — z plane and having an inclination o with
respect to the x-axis (see Fig. 2) the general equations of a conical shock read.

x= rcosb,(¢)cos a+rsin 0,,(4) cos ¢ sin o (3.52)
y= r sin0,(¢)sin ¢ (3.5b)
z = —rcos 0,,(¢) sin a+r sin 8,,(¢§) cos ¢ cos a (3.5¢)

where w indicates the shock wave.

It is possible now to find at every point of the shock surface the normal vector n and two
tangent vectors ¢, and ¢,. The components of the velocity ¢ in the direction of these vectors
will be denoted by u,, u,, and u,, respectively.

Figure 2. Geometrical representation of a conical shock.

If the quantities in front of the shock are indicated by the suffix f and those aft of the shock
by the suffix a, the following three conditions must be fulfilled (see e.g. [12]).

uftl = uat1 (3.63)
Up, = Ug, (3.6b)
U, 1 (y—1)MZ+2

where M, = u, /a,.

Assuming the free stream velocity U, to be directed along the x-axis and using egs. (3.5) and
(3.6) the following expressions for the spherical components of the velocity aft of the shock can
be found.
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u, = cos 0 cos a+sin 0 sin a cos ¢ (3.7a)
171 4 in o, %0 .
y+1 d¢ sin 4,
Uﬂ = 2 + 2 2 (3.7b)
(figﬂ) + sin?9 (1) M 4
dé e
-1
— Y——A% + Bsin 6, 40,
" — y+1  d¢ _ d¢ (3.7
- <%)2+ $in0 G+)MZA° "
d¢ e

The quantities 4 and B are given by

w

dé

A =sin o sin ¢ — sin*6,, cos a+ sin 0, cos ,, cos ¢ sin « (3.8a)

w

B = (—sin 0, cos a+cos 0, cos ¢ sin ) % — sin B, sin ¢ sin . (3.8b)

Using eq. (3.6¢) together with eq. (3.2) the quantities p and p can readily be derived and are as
follows

9. = (+1)MZ 4° (392)
a — 2 .
(y—1)M2 A2 +2 {(%) + sinzew}
_ 2
L o] 2]
L7 U . (3.9b)

pa - 2
M2 - {(%) + sin? HW}

As is clear from egs. (3.7), (3.8) and (3.9) all the quantities at the shock depend on the unknown
quantity 8, only.

Since the surface of the conical body can be described by a system similar to eq. (3.5), it is
easily derived that the condition of zero normal velocity reads

an, _
de)—

where the suffix s refers to the surface of the body.

vsin 0, — 0 (3.10)

3.3 An algorithm for the N-strip method

So far the actual form of the divergence expressions for conical flow have been derived together
with the appropriate boundary conditions. From the discussion given in section 3.2 it is clear
that the flow quantities have to be determined in a region which is indeed as indicated in Fig. 1.
The known boundaries of this region are apparently ¢ = 0 and ¢ = 2%, and the surface of the
conical body under consideration i.e.

0=6,(¢)=0s(¢). (3.11)

The upper boundary 6 = dy(¢) = 0,,(¢) being the shock wave is an a priori unknown quantity.

Hence the next problem is to transform eq. (2.9) into a form which can be used for practical
computations, using the information just discussed. For this purpose it is necessary to establish
the actual form of the coefficients a;; and h(9;) occurring in eq. (2.9). First the geometry of the
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strips should be chosen. In terms of the still unknown shock wave dy(¢) = 0,, it is assumed to be
given by

0=05,(¢)=0$)+j40(¢) j=0..N (3.12)

where 40=(0,,—0,)/N.
Ttis further assumed that the quantities of interest say F, can be written as polynomials of
degree N in 6, hence

N
Fi = Z Cliel . . (3.13)
=0
Thus it follows that the value of FY is
N
Fl= 3} c;(6,+j 46y
1=0

or in matrix notation F; = Kc,.
Eliminating ¢;; from this set of equations there follows

c,;= K~ 1F. (3.14)
Combining eq. (3.14) and eq. (2.3) there is obtained
N
g;= ) Ky'¢'
I=0

where K; ! is an element of the matrix K .
The coefficients a,; can now be found from eq. (2.5) and are given by

1% N 1
a = J g;dd=> — i Kljl{(G +kAGY -0 (3.15)
[N 1=0
In order to find the coefficients h;(d,,), eq. (3.13) has to be differentiated with respect to 6, hence
oF, XY
[ lc:: -1 .
= &

Using eq. (3.14) together with eq. (2.8) there follows immediately
N
hi(0) = l;) IK; ' (0,+mA6) 1. (3.16)

It should be remarked that the quantities a,; and k;(d,,) have to be independent on 6,, due
to their invariance for a translation in 6. Furthermore it is easily seen that a,; is homogeneous
in A6, while h{(d,,) should be homogeneous in (46)~ . These facts can be used to simplify the
calculation of the matrices involved. Taking then in this calculation 6, =1 and 40 = 1, it is
readely verified that egs. (3.15) and (3.16) can be written as

[a,;]=bK 1460 =M A0 (3.17)
where

K= [0+, and (5] - |11
while further —

[7;(8,)] =dK~1(46)~' = N(46)~* (3.18)
where '

[dn] = [1(m+1)"1].
Inserting egs. (3. 17) and (3.18) into eq. (2.9) and taking into account eq. (3.12) there is found

Al dP] do, . dAo il N ,
szj{dqs 40— <¢ >z J,p} 60-0.0) = 3. W,S140.
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This equation can be further simplified by introducing the following matrices
[em]l=[l(1+m)"'m], P=eK!, U= MN, V=MP.
The resulting equation proves to be
— dP, —add, o dA0 .
M—A40-UP,—= — VP,—— — Q2= MS, 40 3.1
dd) 13 dd) 13 dd) + Ql Ql 14 ( 9)
where e.g. P is the vector (Pj), and 'Q; is the vector §, with the first element omitted.

When instead of P, Q; and S; the components of the vectors F; and the scalar fields T; are
used as defined in eq. (3.4), eq. (3.19) gives the algorithm for the N-strip approximation for
conical flow. The next problem is to obtain a solution of eq. (3.19) for a specific configuration.
This point will be considered in the following chapter.

4. The Solution of the Algorithm for a Circular Cone by the Method of Stone.

The system of ordinary differential equations as given by eq. (3.19) is certainly not in a form
already which makes it amenable to a solution. In the case considered here the unknown
quantity is the set {u, v, w, p} and by using eq. (3.4) it is possible to transform eq. (3.19) into a
system of equations for the elements of this set. This system can be solved in principle by any
of the known methods. It should be remarked that the compatibility conditions for ¢ = 0 and
¢ = 2xn lead to a boundary value problem which seems, for a number of reasons, not easy to
solve. :

Here it has not been tried to follow this way, since the purpose of the paper is to show the
convergence of the method by comparing the results with those already available in literature.

Therefore the configuration to be considered is a circular cone at an angle of attack « and the
method of representing the unknown quantities will be the Stone method [6].

In the Stone method it is assumed that the quantities u, v, w, p and 8,, can be expanded in
a power series in « as follows

u =ug+ au’ cosd + ol (ut+ux cos 2¢) (4.1a)
v =vy + " cos ¢ + o*(v¥+v¥ cos2¢) (4.1b)
p =po+ ap’ cos ¢ + o*(p¥+p% cos2¢) (4.1c)
0, =0,,,+a(l—¢e)cos p+a?(i,+ s cos 2¢) (4.1d)
w = aw” sin ¢ + o w¥ sin 2¢ (4.1e)
while 0, =0, . (4.11)

As is well known, this approach has the deficiency that it is not able to represent the so-called
vortical layer in the vicinity of the body [8]. As has been shown by a number of investigators
among them Willett [9] and Munson [13] it is possible to remedy this situation by a careful
analysis, using the method of the matching asymptotic expansions. It then turns out that the
pressure as found by the Stone method is valid throughout the field, whereas u, v, w and p
need a correction in a small layer near the body. Since.in many cases the pressure will be the
most important quantity, these corrections can be neglected then.

The real reason, however, to use the Stone approach is that eq. (3.19) can be reduced to a
system of sets of algebraic equations which can be solved consecutively, while abundant
numerical results are available [7], [10] and [11].

In the sequel the zero-, first- and second order terms will be treated in a number of sections.

4.1 The solution for axially symmetric flow

In the case of axially symmetric flow the system (3.19) can be strongly simplified. Denoting
the components of F; by F;; and F;,, the fact that w has to be zero, while all quantities have to be
independent of ¢ lead to
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Fo—Fy=MT40 i=1..3. (42)
The boundary conditions are readily verified from egs. (3.7), (3.9) and (3.10) to be
u) = cos 0, (4.3a)
N __ 2 Sin2 0wo 43b
Po = (’)}+1)M00 (Y—I)Mi sin20w0+2 ( . )
N sin 0,
b= = 4.3c
p (4.3¢)
v =0 (43d)

The system (4.2) is a set of transcendental algebraic equations which cannot be solved directly.
However, for a given value of A6 the system reduces to a set of algebraic equations of third
degree. This latter set can be solved rather easily in an iterative way by applying the Newton—
Raphson procedure. Hence the following method was used for obtaining the solution of eq.
4.2).
— A set of estimated values is chosen for 0,,, and hence for 49
— For each value of 0, the system minus one omitted equation is solved by applying the
Newton-Raphson procedure.
— The omitted equation is used to determine a new estimate of ,,, and so on until the required
accuracy has been reached.
The actual form of the system of equations to be solved becomes after (p— 1) iteration steps
of the Newton—Raphson procedure

R,x,=B, 4.4

where R, is a matrix with (3N —1) x (3N —1) elements and where x, and B, are vectors with
(3N —1) elements.
The elements of the unknown vector x, are given by the following expression

xP={(ly =), (o1 —=0), (0241 —p9)}  g=0..(N..1r=1..(N..1)

The subscript zero, referring to the zero angle of attack case has been deleted here and will be
deleted in the rest of this sections. The elements of the known vector B, are

B] = {(MT 40 —F ,+ F%,, MT, 40— F,+ FY,, M T,—F3,+F3,}
where the prime in the last expression means the deletion of the last row of M and the last
element of F;,. It will be clear that the values of the elements are computed from the known
values of u,, v, and p,. Solving the system a set of values for i, ,, v,, and p, , is obtained.

After completion of this iteration, a new value for 6,, can be found by solving as a function of §,,
the omitted equation

N — .
FY,—F%,— Y My Th40=0. (4.5)
-

Since this equation is a transcendental expression in 6, this leads to another iteration with
respect to the value of 6. Experience has shown that the process as described here is rapid
convergent to the true solution of the original system (4.2).

The attention is once more drawn to the fact that egs. (4.3) and (4.4) indeed present an algo-
rithm since they lead to a program whose size is virtually independent of the number of -
strips N.

4.2. The first order lift case

Once the solution of the flow quantities for the zero angle of attack case has been obtained, it is
possible to proceed to the solution of the first order quantities u”, v”, w”, p’’ and &. The govern-
ing system of equations and the appropriate boundary conditions can be derived from egs.
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(3.7), (3.9) and (3.19) by inserting eq. (4.1) and equating to zero all terms in « cos ¢ and « sin ¢.
The boundary conditions give rise to the following expressions for the shock wave quantities

uy =¢sinf,, (4.6a)
y—1 . 2
N = t,, {—— sinf,, — - .
ON = € €O {y+1 Si%wo (y+1)M2 sin GWO} (4.6b)
1—p¥ 1
W;v =& Tpo - a (46C)
.y 4¢(p3)?
Py = G+ )M2 sin0,, cot 0, (4.6d)
vy =0 (4.6¢)

where for reasons of readibility the superscript N in the first order quantities has been changed
into a subscript.

- The system of governing equations, when expanded to first order in « gives rise to the follow-
ing set of equations.

12

[ar]

pe e — —x 1—
1

A, — A%+ MB, A0— MC, A6+ VB, ];8 -0 (4.7)
It follows that the eqgs. (4.7) lead to a linear algebraic system of 4N equations for the 4N
unknowns &, ug, wg, P, 4y, vy, wy and p; (r = 1...(N...1)). It will be clear that the shock wave
quantities are all expressed in the unknown quantity ¢ by using eqgs. (4.6a){4.6d).
Here too the total amount of programming is independent of the number of strips, while no

difficulties are encountered in solving the system.

4.3, The second order lift case

Having obtained the zero-order and first order terms in the expansion given by eq. (4.1), the
results can be used to calculate the second order terms. It is easily seen that the governing
equations and the boundary conditions can be split into two independent systems.

The boundary conditions for the first system read

ufy = —4(1+¢*) cos 0,,— 4, sin 6, (4.8)
y—1 i i
vk = 40+ 1 sin 0, {(1—2e+3¢*) —(1+¢*) cos®0,,,— 24, sin 20,, } +
e(l—¢) 1 {(1-2e—¢e*)+ (1 —¢&*)cos?b,, +24,sin20,, }
2sin 6, 2(y+1)M2Zsin*6,, ’ (Z.Sb)
"2 2
b = RO 2(px,) (62— ) cos20,,, +22— 1, sin20,,} (4.8¢)

pye (1M sin*0,,

while the set of linear equations is given by
TH — AR+ MB% VB4 —MCH=0 i=1..3 (4.9)

i

As is clear these terms in fact give a correction to the axially symmetric field due to the angle
of attack. Although the various expressions become more elaborate, it is not difficult to write a
program for the system (4.9), thereby taking into account of the egs. (4.8).
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The boundary conditions for the second system read

uf, =%(1—¢”)cos 0, —A;sin 6, (4.10a)
y—1 .
vy = — m {(1 —8)2 —(1 —8)2 cos? 6,245 sin 29“,0} +
) . {(1—¢)*>+ (14 &) cos®6,,,— 25 5in20,, }
: 2 i3 S wo v wo
2sin 6, 2(y+1)MZ sin0, (4.10b)
l1—¢ 1-2¢ 4 1
. . P . 4.10
Vi y—i—lCOt Oy {1 M2 sinZGWO}+ y+17° { M2 smzﬁwo} (4.10c)
(ox)* 2(py,)* ,
Pl =% P:ro T I)Mgosin“ﬁwo {(e*+%) cos?B,,,— A5 sin 26, } (4.10d)
vE, =0 (4.10e)
The set of equations proves to be
A% — A%+ MB%,— VB — MC*, = i=1..4. (4.11)

While the system (4.9) is a set of 3N equations for the 3N unknowns A,, u¥,, p&;, ufy, v}, pk,
the system (4.11) is a set of 4N equations in the 4N unknown quantities A5, ud,, wg,, P&, ub,
vk, wk, pk. In this case too, the programming itself is independent of the number of strips and
presents no difficulties.

A more detailed derivation of the coefficients in egs. (4.4), (4.7), (4.9) and (4.11) is contained
in [15].

5. Discussion of Results

In the preceding chapter the general formulae are given from which the actual flow quantities
in a certain case can be computed. In order to do so four separate programs have been written
which can be linked together by using discs or magnetic tapes.

The first program uses as input estimated values of ug, p. , two values of 6, , the quantities
v, M, 8,and N, the number of strips to be used. The program computes the values in the axially-
symmetric case according to the formulae given in section 4.1. Experience has shown that the
choice of the values of uy, and p,, is not very critical for the convergence of the Newton—
Raphson method. The output of the first program can be used as input for the second program .
which calculates the double primed quantities according to the expressions given in section 4.2.
The output of the second program consists of the flow quantities of the axially-symmetric case
and the first order lift case. It can be used as input for either the third or the fourth program.
The third program calculates the second order corrections to the axially-symmetric flow field,
while the fourth program computes the second order corrections due to harmonic distortions
in the boundary conditions. To show the capability of the algorithm four different cases of
conical flow have been considered, viz.

f,=10° M, =23869 and M, = 54223
6,=20° M, =24331 and M, = 5.5457.

In this way the behaviour of the flow can be shown in low and high Mach number cases and
for small and large semi-top angles. In Table 1 results are given for the axially-symmetric case.
The largest number of strips in each case is such as to give results correct up to the fourth
decimal place. '

In Table 2 results are given for the first order lift case. Here too the number of strips has been
chosen as to fulfill the same requirement as for the axially symmetric case.

In Tables 3 and 4 the results of the two second order cases are given. Here in both cases the
results are calculated for up to ten strips.
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TABLE 1 Results for axially symmetric flow

P. J. Zandbergen, H. 1. Baurdoux

M, 0, 0, ug Ps u, v, P number
of
strips
2.3869 10° 0.46012 0.95641 1.26044 0.89601 —0.40347 1.10056 Kopal
0.51632 0.98898 1.05797 0.86964 —0.37880 1.30330 1
0.45903 0.95203 1.24135 0.89648 —0.40404 1.09661 2
0.46117 0.95559 1.26052 0.89553 —0.40295 1.10435 3
0.46065 0.95645 1.26059 0.89576 —0.40321 1.10248 4
0.46043 0.95643 1.26076 0.89586 —0.40333 1.10168 5
0.46032 0.95640 1.26046 0.89591 —0.40338 1.10128 6
0.46013 0.95643 1.26046 0.89599 —0.40348 1.10059 7
54223 10° 0.26203 0.97265 1.90404 0.96586 —0.15281 1.69528 Kopal
0.26648 0.97319 1.87008 0.96470 —0.15175 1.73531 1
0.26204 0.97249 1.90078 0.96586 —0.15281 1.69527 2
0.26204 0.97266 1.90418 0.96586 —0.15281 1.69527 3
2.4431 20° 0.57674 0.87867 1.77523 0.83824 —0.34733 1.57001 Kopal
0.60133 0.87852 1.75755 0.82458 —0.34154 1.65643 1
0.57649 0.87814 1.77143 0.83838 —0.34740 1.56904 2
0.57689 0.87848 1.77518 0.83816 —0.34730 1.57047 3
0.57677 0.87867 1.77515 0.83823 —0.34733 1.57006 4
0.57676 0.87868 1.77523 0.83824 —0.34733 1.57000 5
5.5457 20° 0.42644 0.91570 3.27586 0.91045 —0.13503 3.06331 Kopal
0.42826 0.91544 3.26556 0.90970 ~0.13504 3.07516 1
0.42643 0.91567 3.27484 0.91045 —0.13503 3.06325 2
0.42644 0.91570 3.27584 0.91045 ~0.13503 3.06332 3
0.42643 0.91570 3.27581 0.91045 —0.13503 3.06329 4
TABLE 2 Results for first-order lift case
M, 0, 0, £ uy wy ps ul, v, Wi, P numbe:
of
strips
2.3869 10° 046012 0.25663 0.26657 —1.52926 —1.65852 0.11420 —0.14535 —093255 —0.96357 Kopal
045588 020308 092784 —1.41959 —1.50947 0.08941 —0.10662 —0.93744 —0.73466 1
045903 030171 0.17822 ~1.43725 —2.04005 0.13368 -—0.15555 —0.93848 —1.09160 2
046117 024893 0.24611 —1.4898 —1.73077 0.11077 —0.12678 —0.92903 —0.90071 3
0.46065 0.25865 0.26515 —1.51513 —1.67005 0.11498 —0.13212 —093109 —0.93586 4
046043 025843 0.26576 —1.52430 —1.66257 0.11483 —-0.13217 —093155 —0.93504 5
5.4223 10° 0.26203 0.69010 0.20890 —1.02262 -6.79773 0.17873 ~—0.16900 —0.87262 —6.23430 Kopal
0.26203 0.67779 0.26099 —1.08509 —6.72482 0.17557 —0.16571 —0.86785 —6.12325 1
0.26204 0.69029 0.20527 —1.05032 —6.87205 0.17882 0.16873 —0.87298 —6.23511 2
0.26204 0.68968 0.20866 —1.04793 —6.79845 0.17866 0.16859 -0.87273 —6.22957 3
2.4431 20° 057674 0.66461 043555 —1.13362 —2.68804 036237 -—0.16638 —0.87821 —2.35732 Kopal
0.57243  0.67647 0.57157 —1.07924 —2.66310 036643 —0.17426 —0.88458 —2.40948 1
0.57649 0.66762 042491 —1.14568 —2.74146 036390 —0.16821 —0.87945 —237092 2
0.57689 0.66300 043310 —1.15095 —2.69351 0.36161 —0.16668 —0.87759 —2.35383 3
0.57677 0.66384 043541 ~—1.14873 —2.68869 036201 —0.16700 —0.87795 —235702 4
0.57676  0.66406 0.43557 —1.14713 —2.68767 036212 —0.16707 —0.87803 —235782 5
5.5457  20° 042644 093746 0.39181 —0.62017 —6.40733 0.38772 0.00882 —095771 —6.11905 Kopal
042616 094170 0.39645 —0.78782 —6.25440 0.38928 0.00871 —0.96074 —6.15197 1
042643 093722 039171 —0.72227 —6.40606 0.38766 0.00883 —0.95772 —6.11915 2
042644 093747 0.3918 —0.69771 —6.40066 0.38776 0.00884 —095788 —6.12056 3
042643 093741 039179 —0.68357 —6.40517 0.38774 0.00883 —0.95784 —6.12027 4
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An application of the N-strip method 203

As is clear from Tables 1 and 2 convergence is reached more rapidly (with a fewer number of
strips) in the high Mach number cases than in the low Mach number cases. An other tendency
which is visible is the fact that the small semi-top angle cases require more strips than the large
semi-top angle cases. This behaviour can be explained by observing that the gradients in the
flow field become stronger at low Mach number-small semi-top angle cases.

As to the Tables 3 and 4 it is seen that apart from the quantities u}, p¥, u%, wh and p} the
same tendencies are present. However, the convergence is now only in about three decimal
places. This behaviour must be due to the fact that the second order approximation according
to Stone will give rise to infinite values for the quantities referred to above, which in itself is a
consequence of the neglection of the vortical layer in the Stone theory. By using the method of
integral relations the singular behaviour of the quantities at the cone surface is suppressed, but
of course one may not expect convergence of these quantities when increasing the number of
strips. It is very remarkable and a severe test on the method that notwithstanding this the other
quantities show the desired convergence, albeit in less-digits.

Combining the various results it is possible to calculate the pressure distribution along the
cone surface for different angles of attack.

In Figs. 3a-b this pressure distribution in two of the cases considered is given for two
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Figure 3a. Pressure distribution at the cone surface.
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Figure 3b. Pressure distribution at the cone surface.

different angles of attack in each case. It can be concluded that the influence of the second order
terms is quite large. The behaviour of the pressure throughout the field has been given in Figs.
4a—¢ by depicting the isobar pattern. Although there is no sufficient experimental evidence it
seems that the lower angle of attack cases look more realistic than the larger angle of attack
cases.

Of course it is interesting to compare the results obtained by the N-strip algorithm to those
obtained by Kopal with a different method of approach [ 7], [10] and [11]. Therefore the four
cases considered here are identical to some of those considered by Kopal. However, since
Kopal works in a coordinate system where the direction of the undisturbed flow is the direction
of the x-axis, whereas in this analysis a body-axis system is used, the results are not comparable
directly, but have to be transformed according to [ 14] for the first- and second order cases.

In Tables 1 and 2 the Kopal values for the various quantities are also given and it is evident
that the agreement is very well indeed. To check this more closely in one of the cases, the Kopal
pressure distribution as a function of @ for ¢ =0 and ¢ = = has been compared to results of a ten-
strip approximation (see Fig. 5). This comparison in which second-order terms have been
omitted shows a remarkable agreement. Due to the singular behaviour of the second order
terms in the vicinity of the surface, Kopal ran into serious difficulties where trying to obtain
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0193

0.187

Figure 4a. Isobars at 5° incidence (8, = 10°, M, = 2. 3869).
Figure 4b. Isobars at 10° incidence (6, = 10°, M,, = 2.3869).
Figure 4c. Isobars at 5° incidence (6, = 10°, M,, = 5.4223).

Figure 4d. Isobars at 10” incidence (6, = 20°, M, = 2.4432). Figure 4c. Isobars at 10° incidence (0, = 20°, M,, = 5.5457).

Journal of Engineering Math., Vol. 3 (1969) 189-207



206

P. J. Zandbergen, H. 1. Baurdoux

0.24
p
\
|
022 —
0.20 \*
{:ﬂ\
018
Moo= 2.3869;U=10° QO =10°
0.16 —— N-STRIPALGORITHM
x x KOPAL
0.14
012 - - $-0
*-\\

Figure 5. Comparison of Kopal values and the N-strip algorithm in a first-order lift case.

feasible values for the surface-quantities. In the cases when it seemed acceptable he computed
these surface-quantities by extrapolating field values. This is the reason why in only two cases

Kopal-values for second-order terms are available.

In these cases the agreement is quite well again. When considering the convergence in Tables
2,3 and 4 it is seen that in all the cases 4 to 6 strips are sufficient to obtain accurate results.

CONCLUSIONS

In this paper using matrix calculus an algorithm is derived for an approximate method of
solution of certain types of partial differential equations, known as the method of integral
relations. To show its usefullness the algorithm which enables an approximate solution for
an in general arbitrary number of strips, is applied to the problem of the calculation of super-
sonic conical flow. By using the series expansion in powers of the angle of attack, a method
due to Stone, it is possible to check the results with those calculated by Kopal. In spite of the
complications involved—which are related to the occurrence of the vortical layer—the

numerical results give great confidence in the algorithm.
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